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Abstract 
This paper proposes a decentralized blockchain-based crowdsensing platform for dynamic 
cloud resource reallocation and pricing. By integrating supervised linear regression with 
auction theory, the system enables fair and efficient cloud trading based on user reputation 
values. In this model, secondary users (buyers) bid for idle cloud resources offered by 
primary users (sellers), while crowd sensors detect resource availability and feed real-time 
data into the blockchain. A smart contract-driven incentive mechanism ensures high-
quality data collection and trustworthy transactions. The proposed model employs 
supervised learning to classify and allocate resources, using a modified Vickrey-Clarke-
Groves (VCG) pricing mechanism based on critical value theory. Experimental results 
demonstrate the model's high accuracy, fairness, and resource utilization. It has potential 
to optimize cloud allocation while performing economic efficiency and algorithmic 
truthfulness.  
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A Blockchain Platform of Crowdsensing for Cloud 
Reallocation 

 

1. Introduction 
With the development of information communication technologies, cloud computing and 
its relevant functions are becoming quickly integrated and are increasingly being applied 
in business and daily activities. As a shared and configurable computing resource, cloud 
computing is becoming an inevitable process of the decision-making system and it plays 
important roles in business (Gupta, Seetharaman, &Raj, 2013; Hsu, Ray, & Li-Hsieh, 
2014). Considering cloud allocation and pricing jointly together is a challenging task in the 
extant study, since there is fixed pricing, dynamic pricing, game theory-based auction 
design, and machine learning-based mechanisms. All of the different cloud pricing 
strategies have common goals to distribute the available cloud computing efficiently and 
fairly, as well as to profit participants effectively and optimally. 
As a commercial utility, cloud computing has its own characteristics associated with its 
value. Specifically, the intrinsic and the extrinsic features are the two components that 
jointly determine cloud pricing. As a computing and internet relevant service, cloud 
computing is becoming more and more reliant on extrinsic features (Bayramusta & Nasir, 
2016). The leading cloud companies, such as Amazon and Microsoft, have introduced their 
cloud services with different pricing strategies and saving portfolios; however, it can still 
be difficult for buyers to recognize what factors impact cloud value and how to precisely 
estimate that value. This study adopts a classical auction mechanism (VCG) in which both 
sellers and buyers bid, based on reputation value, which is an important indicator in the 
cloud pricing model. Our design illustrates an alternative approach that allows participants 
to pay attention to a unique indicator (e.g., reputation value) instead of to the many varied 
features of cloud computing. 
Depending upon each participant's reputation value, the study proposes a viable and 
efficient blockchain-based cloud reallocation and pricing system that is adaptable to the 
optimization of cloud resources. The buyers (secondary users) will compete for cloud 
resources based on their own reputation values, and the sellers (primary users) will seek 
buyers with higher reputation values and will guarantee buyers the winning resources. In 
the blockchain trading system, the miners (crowd sensors) will take the responsibility of 
sensing the potential available cloud resources as well as the usage status of the primary 
user’s cloud resources. All useful information will be sent, verified, and posted in the block. 
Then, the buyers and sellers will have a chance to complete a transaction (Samimi, 
Teimouri & Mukhtar, 2016).  
The supervised linear regression algorithm is used to classify and to analyze the 
information from crowdsensing to reallocate cloud resources based on the reputation value 
of buyer. It is used to study and to find an optimal model from the training dataset, to 
reallocate cloud resources. Under critical value theory, the pricing algorithm ensures the 
truthfulness of the auction mechanism. From the perspectives of social welfare, allocation 
accuracy, execution time, and resource utilization, the proposed reallocation and pricing 
mechanisms offer strong performance (Lehmann, Oćallaghan, & Shoham, 2002).  
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The proposed blockchain-based cloud trading system has the potential to improve both 
economic efficiency and optimal profits. Also, the blockchain system can set up a relatively 
free trading environment without unnecessary intervention. The integration of blockchain 
and cloud computing is a good example of a blockchain scenario in managerial decisions. 
Blockchain has the potential to build a reputation-based pricing system for cloud and to 
provide a decentralized trading network for cloud transactions. In addition, crowdsensing 
is embedded into the system to locate available cloud resources for potential trading 
between sellers and buyers. 
This paper is structured as follows: Section II provides a literature review of the extant 
studies regarding cloud allocation and pricing. Section III depicts the decentralized cloud 
trading platform. Section IV proposes a machine learning mechanism for cloud pricing: 
the supervised linear regression. Section V illustrates the pricing algorithm. Section VI 
addresses and verifies the procedures for training and testing the supervised linear 
regression. Section VII discusses several potentials for future research. The conclusion is 
found in Section VIII. 

2. The Extant Study of Cloud Allocation and Pricing 
2.1 Fixed Pricing Mechanisms 

Fixed pricing strategies currently are the major mechanisms that cloud providers are using 
to conduct cloud business. Two fixed pricing strategies are pay-as-you-go and subscription 
(Li et al., 2016). Pay-as-you-go allows users to pay for what they have used, without 
promotions. Subscription, another type of fixed pricing, requires users to pay the service 
fees in advance with discounts (Al-Roomi et al. 2013; Luong et al. 2017). For example, 
Amazon AWS employs “On-Demand”, “Saving Plans”, and “Dedicated Hosts.” Microsoft 
Azure uses “Pay as you go” and “Reserved Virtual Machine Instances.” Prices are stable 
and are easy to follow in the fixed pricing strategies; however, the price cannot reflect the 
relationship between supply and demand, under a given circumstance. Both sellers and 
buyers have the potential for loss, with fixed pricing. Dynamic pricing strategies can 
resolve this problem, with varied pricing, according to the fluctuation in the markets.  

2.2 Dynamic Pricing Mechanism 

No-auction Pricing Mechanism 
The dynamic pricing algorithm can estimate the price based on the market status and can 
present a reasonable price, both for cloud providers and for customers. Models from other 
disciplines can also be employed in the pricing of cloud resources. One study (Sharma et 
al., 2015) presents fuzzy and genetic algorithms to keep the cloud price in a certain range, 
based on Financial Option Theory and on Moore’s Law. This approach reflects the impacts 
of the start time of the resource, the QoS (quality of service), the rate of depreciation and 
inflation, and capital investment. By applying the Lyapunov Optimization Model, He et al. 
(2013) addressed the problem of the revenue maximization of cloud allocation. This study 
is a good attempt to balance between the operational costs and the QoE (Quality of 
Experience). Other studies have proposed the Genetic Model (Macias & Guitart, 2011), or 
the Markov Decision Process (Truong-Huu & Tham, 2014), for pricing in cloud computing 
markets.  
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When considering heuristic resource allocation based on greedy algorithms as the major 
algorithm (Zaman & Grosu, 2013), an approximate algorithm can solve the issue of 
resource allocation, but it can also bring computational inefficiency and allocation 
inaccuracy. Although the heuristic algorithm based on the greedy approach can satisfy 
monotonicity, it cannot achieve good results in solving the problem of multi-resource 
allocation. Compared to the optimal solution, its profits, accuracy, and utilization are lower. 
Among other items, user evaluation and operation cost are critical items to consider when 
thinking of cloud pricing. Zhang et al. (2018) proposed a heuristic and truthful auction 
mechanism for the allocation and pricing of cloud computing resources that is based upon 
these two features. Studies (Chatterjee, Ladia, & Misra, 2015 and Do et al., 2016) 
employed the dynamic optional scheme to resolve provision and pricing from the 
perspective of different services, e.g., hardware; both cloud service providers and 
customers were satisfied to some extent. Another study (Jin et al., 2014) used an optimized 
fine-grained algorithm to leverage the potential costs of cloud operation. 
Auction Pricing Mechanism 
Basically, in an auction pricing mechanism, all of the participants know the nature of the 
available resources and the distribution of these resources. Each participant, i.e., a provider 
or a customer, needs a bidding strategy (Milgrom & Weber, 1982). Only when the resource 
allocation is an optimal solution and the allocation algorithm satisfies the monotonicity can 
the auction mechanism be guaranteed to be reliable (Lehmann, Oćallaghan, & Shoham, 
2002). In an auction design, it should benefit at least one of the two parties, the customer 
and/or the provider. In terms of optimal allocation strategy, one study (Nejad, Mashayekhy, 
& Grosu, 2014) used integer programming, and another one (Mashayekhy, Fisher, & Grosu, 
2015) employed dynamic programming to solve the optimal solution for cloud allocation. 
In another study, a combinatorial auction was treated as a decision-making problem for the 
winning bidder and was solved by the maximum group model (Wu & Hao, 2016).  
As the scale of resources and the quantity of requests increase, the time will increase 
exponentially to calculate the optimal results. Hence, when the allocation scale is large, the 
polynomial time approximation scheme (PTAS) or the heuristic algorithm is the more 
effective approach to use in dealing with cloud allocation. Furthermore, Mashayekhy, 
Nejad, & Grosu (2014) proposed a PTAS algorithm for multi-task scheduling. Shi et al. 
(2015) transformed the online auction into a continuous static multi-round static resource 
allocation. Liu, Li, & Zhang, (2017) focused on heterogeneous physical machines that 
solve resource management, and designed multi-dimensional and multi-mapping 
mechanisms based on combinatorial auction and corresponding high-efficiency algorithms 
to obtain approximate solutions. 
To achieve computational efficiency, bidding truthfulness, and competing fairness, other 
researchers (Wang, Ren, & Meng, 2012) employed an auction-style pricing model, which 
helped providers lift the overall revenue through cloud trading. A combinatorial auction 
was designed to dynamically provision multiple cloud resources to achieve social welfare 
approximation and bidding truthfulness (Shi et al., 2015; Samimi, Teimouri & Mukhtar, 
2016). 
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3. The Blockchain-based Cloud Trading Platform 

3.1 Incentive Mechanism in Crowdsensing 

Crowdsensing & Incentive Mechanism  
Crowdsensing refers to the formation of an interactive and participatory sensing network 
through the use of devices such as smart phones, laptops, intelligent wearable devices, and 
the release of information to the participants. Crowdsensing has the potential to achieve 
data collection, information analysis, and resource sharing. As a new mode of sensing the 
environment, crowdsensing is an important channel that participants can use to obtain data 
and services (Ganti, Ye, & Lei, 2011). An incentive mechanism is a means to realize 
crowdsensing by designing incentive methods to motivate and attract participants to join 
in sensing tasks. Crowd sensors will get rewards if they can provide high-quality and 
reliable information. More importantly, incentive mechanisms will be adopted to solve the 
problems faced by providers and participants, respectively, in maximizing the utility. It is 
necessary to increase the level of participation and to ensure that information perceived by 
participants is of high quality and reliability (Yang et al., 2015).  
The cloud server seeks to recruit more sensors at the lowest or most reasonable cost. The 
incentive mechanism of the server platform should be able to motivate participants to 
provide high-quality data, not just to consider the cost of payment. Participants may falsify 
data or personal information to obtain more returns. One applicable way to resolve this 
issue is by conducting an incentive mechanism to stimulate participants based on their 
reputation values. Participants can process the auction without unnecessary intervention in 
a manner of decentralization and privacy, based on their own reputation rankings. The 
incentive mechanism will offer participants more rewards to trade cloud resources via the 
proposed auction platform. In this study, the reallocation of the sensing cloud is determined 
by the server. The server will formulate an appropriate reputation value according to the 
difficulty of a task to ensure the completion of that task. In addition, once the crowd sensor 
completes the sensing task, the reward will be automatically released through the smart 
contract. This mechanism will effectively protect the rights and interests of the crowd 
sensor (Capponi, et al., 2019). 

3.2 The Procedure of Cloud Sensing 

In this study, the blockchain platform is a consortium system that consists of a primary 
user (PU, the seller), a secondary user (SU, the buyer), the cloud server (S), and the cloud 
sensor (CS). The distribution of perception tasks is handled by S. S will formulate an 
appropriate reputation value, according to the difficulty of the task, to ensure the 
completion of the task. 
The blockchain-based cloud sensing system consists of three layers: the physical layer, the 
transmission layer, and the application layer. The physical layer is the bottom layer of the 
system where the CS and the PU are. The PU has the priority of using cloud resources, and 
the CS is used to detect the cloud usage status of PU and to update the information to the 
transmission layer. The transmission layer is in the middle, and it connects the physical 
and application layers. The blockchain network is in this layer. Any transaction can happen 
after the verification of the original sensing data and the transaction to be added to the 
block. The application layer is the top layer of the system, including the SU and the S. The 
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SU is the potential buyer who seeks the PU’s idle cloud resources, while the S processes 
the SU's cloud request, if it is verified by the system.  
(1) Multiple SUs sends requests to the S. The winning SU needs to pay the S service fees 
and the PU access fees. The S’s service fees include the mining fee, the sensing fee, and 
the operating fee. 
(2) The S formulates the corresponding cloud sensing tasks, according to the SU's request 
and reputation value. The higher the reputation value, the more difficult the task, and the 
more rewards that the CS can obtain. 
(3) The S publishes the sensing tasks in the form of smart contracts. The S specifies the 
task reputation value and the corresponding reward of each SU. A smart contract is an 
unmodifiable code that runs on the blockchain. 
(4) CS provides quotes for different sensing tasks. The higher the sensing reputation value 
of the crowd sensor, the more sensing tasks it can perform. Assuming that the reputation 
value of a CS is 𝑅ௌ, the reputation values of the crowd sensor for different sensing tasks 
should satisfy ∑ 𝑅்


ୀଵ ≤ 𝑅ௌ. 

(5) The S selects a certain number of CSs to complete the sensing tasks and broadcasts the 
selection results to all of the CSs in the system. The result is packaged by the miner and 
added to the blockchain. For any SU sensing task with a reputation value of 𝑅ௌ, in order 
to complete the task, the sum of all quotations of all sensing tasks should satisfy 
∑ 𝑅

ೕ்
ೄ


ୀଵ ≥ 𝑅ௌ. If the sum is ∑ 𝑅

ೕ்
ೄ


ୀଵ < 𝑅ௌ, the task cannot be completed. 

(6) The CS completes the process of the sensing cloud and transmits the unprocessed data 
to the miners. The miners receive sensing data from the CSs and process the data that can 
be used by S. The sensing result of each CS is recorded on the blockchain. 
(7) CS receives the task rewards from S, and SU can access the available cloud services. 
Once the sensing data of the CS is verified, a smart contract will automatically reward the 
CS and will update the reputation value of the CS. After receiving the message that the 
task has been closed, the transaction will be completed. 

4. The Supervised Linear Regression Algorithms 
Aiming to distribute the sensing rewards fairly, the rewards to each CS are based on the 
reputation value; a CS will obtain more rewards if the sensor works more. This will 
effectively stimulate CS's willingness to join in cloud sensing. 

4.1 Hedonic Regression Model of Cloud Pricing 

The pricing metrics include the reputation, the cloud features, and the time of the same 
item from different customers’ bids. The proposed hedonic regression model is: 

   𝑃௧= f (𝑅௧, 𝐶௧, 𝑇௧)  (1) 

Where, 𝑃௧  is price, 𝑅௧  is the reputation of a certain cloud service, 𝐶௧  is cloud feature 
attributes, 𝑇௧ is time trend, i represents a certain cloud service, t represents a specific time. 
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4.2 The Allocation Model of Cloud 

Assume that there are m users in the set U. U = {1, 2, …, m}, user i ∈ U. User i proposes 
resources requests 𝐾

ೝ. 𝑘 is a certain cloud resource, r = 1, 2, …, n. User i’s resource 

request 𝐾
ೝ = (𝑘 , 𝑅

 ), 𝑅
  is the reputation value of user i on resource 𝑘. 

Supervised Auction Design 

A complete auction design includes two components: resource allocation and price 
estimation. A reliable auction fulfills two requirements: truthfulness and accuracy. 
Truthfulness means that users cannot obtain benefits by falsified bid, and accuracy means 
that the allocation strategy should be the optimal solution, or at least very close to the 
optimal solution (Milgrom & Weber, 1982). The resource allocation in cloud computing 
is an NP-hard problem. If possible, an algorithm will be used to obtain the optimal 
solution; alternatively, an approximate or a heuristic algorithm will be used as a feasible 
solution to resolve the issue of the NP-hard problem. In this section, cloud reallocation 
and pricing will be introduced and explained in detail. 

Definition 1. Monotonicity 

If the request submitted by a user (𝐵
) can be allocated, any other request (𝐵

ᇲ
) from the 

same user will be allocated on the condition of 𝐵
ᇲ

> 𝐵
. This is the monotonicity of 

resource allocation. 

Definition 2. Critical Value 

If the request submitted by a user is allocated, there exists a critical value (𝐶𝑉). If the 
user bid 𝐵

 > 𝐶𝑉, the request can be satisfied; otherwise, it cannot be satisfied. 

Lemma 1. 

If the resource allocation in the auction mechanism satisfies the monotonicity, and the 
final price satisfies the critical value, the mechanism is truthful. 

The VCG auction mechanism, based on the optimal allocation solution, is truthful. But 
the final price using VCG cannot be calculated within polynomial time. This study 
employs supervised learning classification and regression to design cloud allocation. The 
basic principle is to select some requests from all user requests, and to estimate the 
optimal allocation and price. By fitting the optimal strategy, the training model is applied 
to all users to predict resource allocation. In this section, we design resource allocation 
based on linear regression algorithm (LN) and we construct the price algorithm based on 
the critical value theory.  

The LN Algorithm of Cloud Allocation 
In the auction design, the hypothesis function (ℎఏ(𝑘)) is constructed according to the SU's 
request for different resources. 

ℎఏ൫𝑘൯ = 𝜃 + 𝜃ଵ𝑘ଵ
 + 𝜃ଶ𝑘ଶ

 + ⋯ + 𝜃𝑘
 + 𝜃ାଵට𝑘ଵ

 + 𝜃ାଶට𝑘ଶ
 + ⋯ + 𝜃ଶඥ𝑘

   
(2) 

The goal of the supervised linear regression is to find the rules that SU wins, it is 𝜃ே =
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(𝜃𝜃ଵ … 𝜃ଶ) ∈ ℝଶାଵ. The optimal strategy and the final price of each winning SU will 
be calculated. 𝑝ி

  is the final price from 𝑆𝑈. If 𝑆𝑈 wins, 𝑝ி
 > 0, otherwise, 𝑝ி

 = 0. 
According to the optimal solution and all SUs’ requests, the matrix of SU request is K = 
[𝑘ଵ, 𝑘ଶ, … , 𝑘]். The vector of the optimal allocation is X = (𝑥ଵ, 𝑥ଶ, … , 𝑥)். The vector 
the SUs’ bidding is B = (𝑏ଵ, 𝑏ଶ, … , 𝑏)் . The vector of the final price is P = 
(𝑝ଵ, 𝑝ଶ, … , 𝑝)். We have F (𝜃), 

 F(𝜃) =
ଵ

ଶ
[∑ 𝑥

ୀ ൫ℎఏ൫𝑘൯ − 𝑝൯
ଶ

+ 𝜆 ∑ 𝜃
ଶ

ୀ ] (3) 

To get Min 𝐹(𝜃), 𝜃 can be solved by the normal equation based on the above function. 
Hence, 

          𝜃 = (𝐾்𝐾 − 𝜆𝐿)ିଵ𝐾்𝑃 

L = 
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

൩ 

(4) 

Then, we use the Sigmoid Function to estimate whether an SU’s bid wins or not. It is, 

          𝑃
ௐ =

ଵ

ଵାష(್షഇ൫ೖ൯)
, 𝑊 ∈ (0,1) (5) 

𝑃
ௐ is the probability of an SU winning the bid. If an SU wants to win the bid, 𝑏 > ℎఏ൫𝑘൯. 

Hence, 𝑊 ≥ 0.5 means that SU has a strong chance of winning the resources being bidded 
for. 

5. The Pricing Algorithms 

5.1 The Modified VCG Pricing Algorithm 

A reliable auction mechanism will ensure that the price paid by buyers is optimal. The 
final price proposed in this study is based on the critical value. The estimated winning set 
𝑊 is used to calculate the final price. Specifically, 𝑝ி

శ
 is the maximum and 𝑝ி

ష
 is the 

minimum. When 𝑝ி
శ

− 𝑝ி
ష

> 𝛿, the final price that SU needs to pay is 𝑝ி
శ

.  

5.2 Proof of Truthfulness 

Lemma 2. 
The supervised linear regression is monotonic. 
Proof.  
Suppose 𝑃

ௐ is the probability that the last SU can be satisfied for the expected request. 
Based on the estimation function (Last Function), we have 

          𝑃
ௐ =

ଵ

ଵାష(್షഇ൫ೖ൯)
> 𝑃

ௐ (6) 

So, 
     𝑏 > ℎఏ൫𝑘൯ − ln[(1 − 𝑃

ௐ)/𝑃
ௐ]      (7) 
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This indicates that SU will win the bidding if the SU’s bid satisfies the above function. If 
an SU’s bid is greater than 𝑏, the SU can be guaranteed to obtain the requested cloud 
resources. Definition 1 presents the identical tone of monotonicity.  
Lemma 3. 
The final price algorithm satisfies the theory of critical value. 
Proof. 
When 𝑏 > 𝑝ி

శ
, an SU wins the bid; when 𝑏 < 𝑝ி

ష
, an SU will lose the bid.  

There exists a critical value (Definition 2). Thus, the final price that the SU needs to pay 
is 𝑝ி

శ
, if 𝑝ி

శ
− 𝑝ி

ష
> 𝛿. 

Theorem1. 
The cloud allocation design proposed is truthful. 
Proof. 
According to Lemma 1, the supervised linear regression algorithm satisfies resource 
allocation monotonicity. 
Also, the final price algorithm satisfies the theory of critical value. 
Therefore, the proposed cloud allocation design is truthful. 

6. The Procedure of Training and Testing 

6.1 Resource Allocation Algorithm Training 

In training and testing, an open-source data set DAS-2 1 was used as test data to simulate 
the SUs’ requests. The configuration of the experimental platform is CPU Intel CoreI7 
6500U, 16 GB memory, 1 TB DDR storage. The experimental conditions are: (1) For 
each valid record, CPU, memory, and storage information are used to simulate SU’s 
requests; (2) For any request, an integer value from 1 to 100 is randomly generated and 
used to simulate an SU’s bidding and to preset the reputation value of each resource; (3) 
The optimal allocation plan is solved by IBM CPLEX; (4) The optimal payment price 
based on the VCG mechanism is solved; (5) The implementation of the algorithms is 
programmed. 

The test selected 5000 records as SU requests and generated corresponding bids. We 
calculated the resource density of each SU (𝑑):  

𝑑 =
𝑏

ට∑ (
1
𝑐

∗ 𝑘
 )

ୀଵ

, ∀𝑖 = 1,2, … , 𝑚 
(8) 

According to the resource density, the SU requests are sorted in descending order, to 
form a total sample. The systematic sampling method is to extract 500 samples each time 
as a sample set; a total of 20 sample sets were set up. Among them, 17 samples were used 
as the training sets, and 3 samples were used as the cross-validation sets. This test 
substitutes the prediction model output by each training set into the cross-validation set 
for verification. Finally, the best model is selected as the final prediction model, which is 
used to estimate all SU requests. The prediction accuracy rate (PA) and the prediction 
 

1 Grid Workloads Archives [OL]. http://gwa.ewi.tudelft. nl,2018.2. 
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error rate (PE) are applied to evaluate the model, PA + PE = 1. PA is defined as the 
number of SUs who have the same feasible and optimal solution divided by the total 
number of SUs: 

𝑃
ௐ = ቊ

1, 𝑃
ௐ ≥ 𝑉  

 0, 𝑃
ௐ < 𝑉   

 
 

(9) 

PA = 
ଵ


∑ (𝑃

ௐ = 𝑥)
ୀଵ  

V represents the predicted value of the last allocated SU, P୧
represents the probability of 

a SU winning in the resource reallocation. The greater the value P୧
, the higher the 

probability that a SU wins the bid. To solve θ in LN, the coefficient λ needs to be 
adjusted appropriately to ensure higher prediction accuracy in the cross-validation set. 
Figure 1 shows the change in the prediction error rate with λ when fitting the model in 
the training set to the cross-validation set. For LN, when λ=3, the prediction error rate is 
the smallest at 1.4% (Figure 1(a)). Similarly, for LG, when λ= {30, 40}, the prediction 
error rate is the smallest at 3.2%, (Figure 1(b)).  
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6.2 Comparison of training Time among the Three Algorithms 

The Algorithm of Logistic Regression (LG) 
Different from LN, LG (Logistic Regression) does not calculate the final price, which is 
an important factor of the hypothesis function (ℎఏ(𝑘)) that is constructed according to the 
SU's request for different resources. 𝜃ீ = (𝜃𝜃ଵ … 𝜃ାଵ) ∈ ℝାଶ, the conditions are: 

         𝑓ఏ൫𝑘൯ = 𝜃 + 𝜃ଵ𝑘ଵ
 + 𝜃ଶ𝑘ଶ

 + ⋯ + 𝜃𝑘
 + 𝜃ାଵ(𝑏)ଶ  

g (z) = 
ଵ

ଵାష 

ℎఏ൫𝑘൯ = 𝑔(𝑓ఏ൫𝑘൯) 

 

(10) 

The function F (𝜃) is, 

Figure 1. Comparison of Estimated Error Rate between LN and LG
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   F(𝜃) =
ଵ


∑ [−𝑥 lg ቀℎఏ൫𝑘൯ቁ − (1 − 𝑥)lg (1 − ℎఏ൫𝑘൯)]

ୀ +
ఒ

ଶ
∑ 𝜃

ଶ
ୀ  (11) 

Then, the estimated winning probability is, 

          𝑃
ௐ =

ଵ

ଵାష(ഇ൫ೖ൯)
, 𝑊 ∈ (0,1) (12) 

The Algorithm of Support Vector Machine (SVM) 
When the resource capacity is small and the number of users is large, there are only a few 
users who can be selected and who can obtain the expected resources. The issue of 
skewness will appear in the training set. If the resource allocation algorithm of linear 
regression or logistic regression is still used for training, it will affect the prediction 
accuracy of the resource reallocation. Thus, the alternative algorithm used is SVM (Support 
Vector Machine). The algorithms are as follows, 

         min C∑ [𝑥𝐶𝑂𝑆𝑇ଵ൫𝜃்𝑓൯ + ൫1 − 𝑥൯ ∗ 𝐶𝑂𝑆𝑇(𝜃்𝑓)]
ୀଵ +

ଵ

ଶ
∑ 𝜃

ଶ
ୀଵ  

𝐶𝑂𝑆𝑇ଵ(𝑥) = ൝ −
11

16
𝑥 +

11

16
   0,        𝑥 ≥ 1

, 𝑥 < 1 

𝐶𝑂𝑆𝑇(𝑥) = ൝
11

16
𝑥 +

11

16
   0,        𝑥 ≤ −1

, 𝑥 > −1 

𝑥 = ቊ
1,     𝜃்𝑓 ≥ 0

0,     𝜃்𝑓 < 0
 

𝑓 = (1𝑓ଵ
𝑓ଶ

 … 𝑓
 ) 

𝑓
 = exp (−

ห𝑅 − 𝑅ห
ଶ

2𝜎ଶ
) 

∀𝑗 = 1,2, … , 𝑚 

(13) 

When using SVM to predict resource reallocation, C and σ are important parameters. C 
indicates the accuracy of the estimation boundary, and σ indicates the range of influence 
of each value. The advantage of SVM is that when a small sample training set is used for 
training, it can also obtain good estimation accuracy, 

          𝜃 = (𝜃𝜃ଵ … 𝜃) (14) 

According to SU requests, the estimation function is, 
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          𝑃
ௐ = 𝜃 + 𝜃ଵ𝑓ଵ

 + 𝜃ଶ𝑓ଶ
 + ⋯ + 𝜃𝑓

 , 𝑃
ௐ ∈ ℝ (15) 

𝑃
ௐ is the probability of an SU winning the bid. 𝑃

ௐ > 0 means that an SU has a strong 
chance to win the bidding resources. 
We compared the training times among the three algorithms (Figure 2). When the 
training set size was the same, the SVM’s training time was the longest, and the LG’s 
time was the shortest. The LN’s speed was in the middle. Among the three algorithms, 
the LN had the smallest error rate. The main reason is that its cost function has the 
characteristics of the optimal payment price. Compared to LG and SVM, an extra factor 
needs to be considered in LN to give a higher prediction accuracy. Overall, the proposed 
LN was found to be qualified and can be implemented in the decentralized auction 
design. 

 

6.3 Analysis of Resource Allocation Forecast Results 

After obtaining the optimal prediction models of the three algorithms, 5 test sets were 
randomly generated, for instance, 1000, 2000, 3000, 4000, and 5000 SU requests. The 
social welfare obtained by the two algorithms (LG and SVM), based on supervised 
learning, was lower than the proposed optimal strategy, but was very close (Figure 3). 
This shows that the optimal allocation solution has specific pattern. It can be classified by 
a supervised learning algorithm and can be fitted by a regression model.  

Figure 2. Comparison of Training Time among the Three Algorithms
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Figure 4 shows the prediction accuracy of different algorithms relative to the optimal 
allocation. The accuracy can reflect the fairness of an important indicator of the 
algorithm in resource reallocation. All predictions based on supervised learning 
algorithms had a high accuracy rate (above 95%). Among them, the accuracy of the LN 
algorithm was above 97%, and the proposed optimal strategy had the highest accuracy 
among all of the testing sets. 

 
Figure 5 shows three resource utilizations in different algorithms, given the resource 
capacities of the CPU, the RAM, and the storage. Based on the results, LN and LG had 
similar good performances, but the optimal strategy performed the best among the three 
resource utilizations -- in detail, CPU (100%), RAM (60%), and storage (100%).  

 

Figure 3. Comparison of Social Welfare
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The supervised linear regression (LN) performed very well in the test. Consistent with 
the previous theoretical study, the hypothesis function of the linear regression had the 
characteristics of the optimal payment. Also, the linear regression had the extra 
dimension of variable in the calculation. Hence, the accuracy of the prediction was 
higher. 

 

7. Discussions 

7.1 Computational Complexity 

Buyers (users) will compete and submit bids of reputation values. The mathematical issue 
(NP-Hardness) and the computational complexity should be carefully considered, as well 
(Lu, et al., 2020). Another direction for future study is to examine alternative metrics. We 
employed reputation value as the indicator of pricing in this study. Multiple indicators, 
such as security and network externalities, can be added to represent the relationship 
between price and cloud computing. The more parameters added into the auction algorithm, 
the more accurate and practical the estimates will be. This is worth investigating in real-
world industries, whereas the involvement of more cloud metrics may lead to a complexity 
of algorithms (Bayramusta and Nasir, 2016). 

7.2 Blockchain-based Transaction Mechanism 

The following are several issues related to blockchain mechanisms (Lu, 2019).  
(1) The cost of blockchain node. The decentralized trading system needs to integrate a 
number of information-based tools and facilities. A simplified blockchain-based 

Figure 5. Comparison of Resources Utilization
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framework could be better, in order to reduce the cost of the node.  
(2) The storage mode of data in blockchain. Not all data needs to be recorded in the 
blockchain. Business-relevant data can be separated from common recorded data. In 
particular, common data could be stored off-chain.  
(3) Improvement of communication efficiency. The communication efficiency and the 
performance of the underlying channel are poor. According to different requirements, the 
blockchain verification mechanism can be simplified, or the node's recording can be 
distinguished, thereby improving the communication efficiency of the entire blockchain 
system.  
(4) Selection of different blockchain platforms. There are three popular blockchain 
platforms: private, public, and the consortium blockchain. This study focuses on the design 
of the consortium blockchain trading system. Future research could compare the three 
blockchain platforms to seek an appropriate one to fit a cloud transaction. For instance, the 
openness to participants or the requests for security level will lead to a different blockchain 
infrastructure for implementing cloud resources.  

8. Conclusion 
In a cloud environment, the dominant pricing strategies of leading companies that market 
the cloud are to use certain pricing models to sell their services. In our work, we address 
the reallocation of cloud resources to secondary users who are flexible in their bids for their 
preferred cloud services in a blockchain-based crowdsensing system. We highlight the 
decentralized crowdsensing process, the reputation incentive mechanism, and the 
supervised linear regression algorithm. This study converts cloud reallocation and pricing 
into a training and classification problem analyzed by a supervised linear regression 
algorithm. Based on the optimal allocation and pricing portfolios in the training set, the 
appropriate model was determined. The parameters learned from the supervised linear 
algorithm reflect the optimal strategy for cloud resources in an auction design. The 
estimation model from the cross-validation set ensures that the selection of winning-users 
is precise. The proposed model has a good performance in accuracy, truthfulness, social 
welfare, and resource utilization. 
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