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Abstract 
Cloud computing has a major impact on the IT industry. How 

to price and allocate cloud resources to meet users’ 
requirements is an important problem. This paper proposes a 
dynamic mechanism to pricing cloud services, which can work 
in complex environments such as distributed system and 
uncertain budget constraints. A direct relationship between QoS 
and price is established. The approach uses an optimization 
technique to estimate the potential transaction price in the 
distributed network. It can allocate cloud resources under 
uncertainties, where providers can optimize their revenues, and 
consumers can obtain the resources at a relatively low price. 
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I. INTRODUCTION 

“Cloud computing: a model for enabling ubiquitous, convenient, 
on-demand network access to a shared pool of configurable 
computing resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly provisioned and 
released with minimal management effort or service provider 
interaction.” Cloud services include Software as a Service 
(SaaS), Infrastructure as a Service (IaaS), and Platform as a 
Service (PaaS) [Armbrust, et al., 2010]. Cloud service can be 
treated as an ordinary commodity that has spread through the 
Internet. Currently, leading companies are gearing up to use 
cloud services for their businesses: Amazon’s AWS (Amazon 
Web Services), Google’s GAE (Google App Engine), 
Microsoft’s Azure, and IBM’s Cloud. For instance, Amazon 
Elastic Compute Cloud (Amazon EC2) offers seven instance 
purchasing options: On-demand Instances, Reserved Instances, 
Scheduled Instances, Spot Instances, Dedicated Hosts, 
Dedicated Instances, and Capacity Reservations. But they have 
not yet provided roust optimal design directly related to QoS 
metrics (reliability and availability). Based on the SLA (service 
level agreement), the overall performance of cloud service is 
guaranteed to some extent, but the relationship between price 
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and QoS metrics still isn’t clear. Usually, customers can 
purchase cloud service via various strategies, at certain prices 
which are determined by costs and by an economy proxy 
(supply and demand). As a special commodity, the cloud not 
only has costs that are similar to those of other goods, but it also 
has QoS-related costs that aren’t easy to estimate. It is possible 
that customers bid on cloud services based on the QoS metrics 
that both provider and customer really care about. 

Cloud computing provides us with on-demand and remote 
QoS-embedded services that are scalable, elastic, complex, and 
potentially decentralized [Zhang, et al., 2010]. Quality of 
service is crucial to the cloud industry. On the one hand, 
providers seek to improve the overall performance of cloud 
service to compete in the industry; on the other hand, customers 
expect cloud service to have high QoS standards, especially in 
its reliability and availability. The reliability is actually the 
probability that a system will be operational in a given time 
interval without any failures [Armbrust, et al., 2010]. The 
availability is actually the probability that the system will be up 
and function correctly in a certain time period [Armbrust, et al., 
2010]. High availability, with high costs and price, is essential 
to guarantee QoS, to maintain customer’s confidence, and to 
attract more customers. More customers are involved in the use 
of cloud services, at a lower price each customer needs to pay. 
In other words, it is the economies of scale. The percentile of 
multiple Nines and Fives is defined to express the different 
level of availability in general, e.g., 3 Nines is 99.90% and 4N5 
is 99.995%. In our study, we will briefly illustrate the 
relationship between reliability and availability by MTBF 
(Mean Time between Failure) and MTTR (Mean Time to 
Repair). A balance between availability and price then will be 
established as the reference for participants to estimate the price 
of cloud services. 

One customer’s requirement for a specific service is not 
independent of those of other customers. Indeed, a customer 
using a specific service has some connection with the needs of 
other customers. In an auction, cloud services are auctioned 
concurrently, and bidders can compete for services. Since QoS 
is important, both for the provider and the customer, there is the 
potential to add QoS metrics (availability) into the pricing 
algorithms. A mechanism allocates services, associated with the 
expected QoS, to customers.  

Depending on the customers’ different requirements for 
cloud services, suppliers need a viable and efficient pricing 
mechanism that is critical to the allocation and optimization of 
the available cloud resources. For suppliers, customers will bid 
for their own budget for better service, and the suppliers will 
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select customers based on their bids, provide resources for 
higher-priced customers and guarantee the cloud’s QoS. For 
customers, they can freely choose resources according to their 
own needs. However, due to the liquidity of marginal customers, 
whose bidding is uncertain, and it is difficult to estimate the 
demand based on existing bids. The cloud resource scheme 
based on uncertain bid auction has the potential to improve both 
economic efficiency and optimal profits. 

Our design is a QoS-based robust optimization mechanism 
that includes multiple customers bidding for a variety of cloud 
services with QoS guarantees offered by different providers in 
a distributed network. The reasons why our pricing model 
combines QoS metrics with auction design are (1) cloud 
computing is a new and advanced computing technology. Cloud 
services are different from ordinary products or services, which 
can be evaluated relatively easily based on supply and demand. 
However, the cloud has unique QoS features, such as reliability 
and availability. An auction is a proper approach to evaluate 
not-easy-estimated parameters of cloud. (2) Cloud pricing is 
still in its early development stage (Zheng, et al., 2014). There 
is no direct reference to pricing cloud services based on QoS 
metrics. Hence, an auction algorithm is an appropriate way to 
estimate the valuation of certain cloud services and to allocate 
resources efficiently. (3) An auction design can sell services in 
a way that customers come to expect, specifically based upon 
Service Level Agreement (SLA) and Quality of Service (QoS). 
There are no obvious QoS-based pricing algorithms in the 
extant literature. The most likely exponential relationship 
expresses the intrinsic connection between price and QoS 
metrics and offers a straightforward pricing reference to both 
provider and customer. 

In this paper, we address the issue of designing a robust 
optimal mechanism, through which cloud services are 
distributed between provider and customer, along with QoS. 
The goals are (1) to propose QoS-embedded availability to price 
and to allocate cloud services from providers to customers, and 
(2) to flexibly set up a dynamic pricing mechanism to enable 
budget constraint. Our contribution is to build a QoS-based 
dynamic auction model to effectively allocate cloud resources. 
Specifically, as a critical indicator of QoS, availability is used 
to estimate the value of cloud service in the pricing algorithms. 
Because of the unique features of the cloud, the relationship 
between price and QoS availability is not simply linear. We 
apply a robust optimal scheme to allocate resources and to 
optimize revenues among participants. 

The paper has the following structure. A complete overview 
of the auction design for cloud computing (fixed pricing 
strategy, dynamic pricing strategy, and auction pricing strategy) 
and discussion of QoS-embedded optimal pricing strategy are 
addressed in Section Ⅱ. Section Ⅲ depicts the relationship 
between QoS metrics (availability) and price. We describe and 
explain the detailed stages of functions and scheme in Section 
Ⅳ. Section Ⅴ explores future directions. The final section 
summarizes the paper. 

II. CLOUD PRICING MECHANISM 

Cloud-related usage is becoming more and more popular in 

the daily life. Pricing is one of the important issues in the cloud 
industry. In this paper, we divided cloud pricing mechanisms 
into three categories: fixed pricing strategies, dynamic pricing 
strategies, and auction pricing strategies. Specifically, the three 
popular fixed pricing strategies are pay-as-you-go, subscription, 
and pay-for-use. Dynamic pricing strategies have many 
different algorithms, such as Genetic Model, Financial Optional 
Theory, Markov Decision Process, etc. Auction pricing 
strategies consist of various auction design, such as English 
auction, sealed-bid auction, double auction, and combinatorial 
auction. A summary of the cloud pricing scheme is addressed 
in Table 1.   

A. Fixed Pricing Strategy 

Provider presents the price of cloud service, and customer 
pays the amount if the customer expects to use the service. The 
price is stable. Although the fixed pricing strategy is 
straightforward to both provider and customer, the mechanism 
is unfair to all potential customers who don’t have the same 
needs [Yeo, et al., 2010]. Even to the provider, the mechanism 
is not an optimal strategy, especially when demand is higher 
than supply.  

Pay-as-you-go, which charges customers based on their 
overall resource usage. The customers pay for the amount they 
consume of a product or the amount of time they use a certain 
service. Pay for resources, which charge customers based on the 
technical features of cloud services, such as storage and 
bandwidth.  Subscription, customers subscribe to certain 
service for a time period. Subscription is another type of fixed 
pricing, in which the customer pays a fixed amount of money 
to use the service for longer periods at any convenient time or 
amount. 

The provider presents the price of cloud service, and if a 
customer wishes to use the service, the customer pays the 
amount according to the agreement. In the cloud industry, three 
pricing mechanisms are widely employed, pay-as-you-go, 
subscription, and pay-for-use. Pay-as-you-go charges 
customers based on the overall resource usage for a certain time 
period. Subscription is another type of fixed pricing, in which a 
customer pays a fixed amount in advance to use the service for 
a longer period of time. Depending on the technical features of 
cloud services, such as storage and bandwidth, a customer is 
required to make pay fees. The common feature of these three 
pricing mechanisms is that price remains stable over the contact 
time. While fixed pricing strategies are straightforward to both 
provider and customer, the mechanism is inappropriate to all 
customers because not all customers have the same needs [Al-
Roomi, et al., 2013; Luong, et al., 2017]. Even for providers, 
the mechanism is not optimal, especially when demand is 
higher than supply in the real world. Our pricing design is 
embedded with an auction algorithm that can offer all 
customers equal opportunities and competition associated with 
dynamically changing prices. 

The most prevalent method of pricing in cloud is pay per use, 
which is based on Units with constant price. Another common 
pricing model is subscription, whereby users sign a contract 
(subscribe) based on the constant price of service unit and a 
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longer period of time, for example six months or a year. 
Obviously, customers and providers would like to use static and 
simple pricing models in order to ease payment prediction. 
Nevertheless, for high-value services dynamic pricing can be 
more efficient. 

B. Dynamic Pricing Strategy 

The final price is calculated by a dynamic pricing mechanism. 
In this pricing strategy, prices change with respect to market 
conditions or status. An appropriate pricing algorithm is an 
effective way to estimate the value of cloud service and to 
allocate the available resources. Aiming at providing high QoS, 
Sharma, et al. (2012) employed the financial option theory and 
the related economic model to capture the real value of cloud 
service within the lower and upper boundaries.  

Macías & Guitart (2011) proposed a genetic model for 
pricing in cloud computing markets. Choosing a good pricing 
model via their genetic algorithms involved three main steps: 
define a chromosome, evaluate it, and finally select the best 
pairs of chromosomes for reproduction and discarding those 
with the worst results. The results of the simulation illustrated 
that genetic pricing acquired the highest revenues in most of the 
scenarios. Service providers employing genetic pricing 
achieved revenues up to 100% greater than the other dynamic 
pricing strategies and up to 1000% greater than the fixed pricing 
strategy. The proposed genetic model with a flexible genome 
was proven to be more stable against noise and earned more 
money than the one with the rigid genome. The proposed 
genetic model is easy to implement, flexible, and easily adapted 
to a set of various parameters that influence pricing. The genetic 
pricing approach can be further explored by defining relations 
between the parameters that influence pricing. 

Li, et al. (2011) proposed a pricing algorithm for cloud 
computing resources. This proposal used the cloud bank agent 
model as a resource agency because it could provide proper 
analysis and assistance for all members. The authors used a 
price update iterative algorithm to determine the price. It 
analyzed the historical utilization ratio of the resources, iterated 
current prices constantly, assessed the availability of resources 
for the next round, and determined the final price. The model 
included a user request broker (GCA), cloud banking, a cloud 
service agent (CSA), and a cloud resource agent (GRA). The 
proposed pricing model was comparatively fixed because it 
could not adapt to the rapid changes that typically occur in the 
market. However, it could reduce the costs to providers and 
maximize their revenues, allowing resources to be used more 
effectively. 

In particular, George, et al., (2019) study practices of AWS 
spot instances—spot prices are changed dynamically by AWS 
based on real-time demand and idle capacity. Truong-Huu & 
Tham (2014) consider competition between service providers 
and formulate the competition through a Markov Decision 
Process. However, those studies have not examined and 
compared the pricing schemes that are considered in our study, 
and they have not studied the service providers’ optimal choices 
of pricing schemes and the impact of the chosen pricing 
schemes on the customers’ choices of service providers. 

Another major recent research on cloud pricing is dynamic 
pricing algorithms. The market-clearing price is computed by a 
dynamic pricing mechanism. In this pricing strategy, prices 
change with respect to market conditions or status. An 
appropriate pricing algorithm is an effective way to estimate the 
value of cloud service and to distribute the available resources. 
The dynamic pricing mechanism can accurately estimate the 
price based on market status and present a reasonable price for 
both provider and customer. For instance, Macías & Guitart 
(2011) proposed a Genetic Model for pricing in cloud 
computing markets. Sharma, et al. (2012) employed the 
Financial Option Theory and the related economic model to 
capture the real value of cloud service within the lower and 
upper boundaries. Truong-Huu & Tham (2014) used a Markov 
Decision Process to illustrate the competition between 
providers and to compute the price. Dynamic pricing strategy 
mainly focuses on changing prices based on supply and demand, 
but the strategy ignores the important cloud feature, especially 
the QoS metrics. The value of clouds is directly affected by QoS 
metrics and operational process. Although dynamic pricing 
strategy can offer a reasonable price, it is difficult for 
practitioners to estimate the actual price of cloud, because there 
are no QoS-related parameters in the extant dynamic pricing 
designs. Our pricing design added QoS availability into pricing 
models that clearly indicates how a customer can bid directly 
on the expected QoS level with the related price.  

C. Auction Pricing Strategy 

Theoretically, prices should be determined by the interaction 
between supply and demand; however, in practice, it seems like 
the companies employ specific auction mechanisms in setting 
up the prices, in order to make optional profits and to attract 
more potential customers. From Amazon’s initial effort of using 
auction-based allocation, it is reasonable to expect that cloud 
providers will be interested in more efficient allocation and 
pricing schemes in the near future.   

This is a market mechanism for service allocation that 
enables users and providers to deal through double-sided 
combinational auction. This mechanism is suitable for cases 
requiring various services and where many participants exist. 
Both users and service providers should be satisfied by the 
resource allocation mechanism. A double-sided auction model 
and K-pricing scheme were used in this mechanism. 

Basically, all participants accurately know the nature of the 
available resources and the distribution of these possible 
resources. Each participant, whether the participant is a 
provider or a customer, needs a bidding strategy [Milgrom & 
Weber, 1982]. Reasonable uncertainties from participants and 
markets make auction design more attractive and more 
desirable through some mathematical algorithms and bidding 
strategies. 

Many classic auction designs were employed to price cloud 
services. When they were applied to pricing cloud services, the 
mechanism would be NP-hard. Wang, et al., (2012) proposed 
an English auction. The mechanism focuses on how to 
maximize the seller’s revenue and shorten the execution time. 
Another study about dynamic auctions was conducted by Wang, 
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et al., (2013) to cope with changes in cloud market. Asymptotic 
optimization, incentive compatibility, and computational 
complexity were pursued, through their capacity allocation 
scheme. A double auction model has been used to distribute 
cloud resources to multiple buyers and sellers [Shang, et al., 
2010]. A framework uses marginal bid to evaluate cloud 
capacity distribution and to generate reasonable revenue for the 
cloud provider [Lin, et al., 2010]. 

In practice, leading cloud service companies, such as 
Amazon AWS or Microsoft Azure, lack the adoption of a 
desirable auction mechanism to efficiently allocate resources. 
For instance, Amazon EC2 offers three categories of pricing 
schemes to sell its cloud services: Reserved Instances, On-
Demand Instances (Fixed Price), and Spot Instances. Spot 
Instance is one type of auction-style pricing policy, through 
which bidders can periodically bid on offered resources 
dynamically. Successful bidders can use these instances until 
the auction price exceeds their bids at a later date. This design 
has attracted significant attention from practitioners and 
researchers, and it has prompted a number of studies on auction-
based pricing design. Zaman & Grosu (2013) believed that an 
auction design is better than the current fixed-price mechanism. 
Depending on the experimental results, Auction-Greedy is a 
better choice than Auction-Linear Programming. Auction-
Greedy can generate higher revenue and resource utilization in 
a limited time. But these mechanisms are only applied to certain 
types of items. Extended from Zaman & Grosu (2013), Samimi, 
et al., (2016) proposed the Combinatorial Double Auction 
Resource Allocation, focusing on the economic efficiency of 
the cloud computing environments. Providers are more 
concerned about what economic profits they can obtain. Thus, 
based on individual rationality and incentive compatibility, our 
study will address two other important issues, QoS-based 
pricing mechanisms and revenue approximation. 

Table I 
Summary of Pricing Scheme for Cloud Allocation 

Fixed Pricing Strategy 
Classification: Pay-as-you-go, Subscription, Pay for Resource 
Characteristics: Stable price for the time of usage. Easily implemented, 
without an auctioneer. 
Example: Amazon EC2, Microsoft Azure 
Dynamic Pricing Strategy [Macías & Guitart, 2011; Sharma, et al., 
2012; Du, et al., 2013; Truong-Huu & Tham, 2014] 
Classification: Genetic Model, Financial Option Model, Markov Decision 
Process 
Characteristics: Price is changed based on supply and demand. Multiple 
providers to multiple customers. 
Auction Pricing Strategy 
English Auction [Wang, et al., 2012] 
Characteristics: One-sided ascending auction. The winning buyer pays the 
bidding price. One single provider to multiple customers, with an 
auctioneer. 
Double Auction [Zaman & Grosu, 2013; Samimi, et al., 2016] 
Characteristics: Both provider and customer propose bids. Multiple 
providers to multiple customers, with an auctioneer   
Combinatorial Auction [Zaman & Grosu, 2013; Samimi, et al., 2016] 
Characteristics: Customer can bid for customized bundle cloud services. 
The auction design construct computation complexity. Multiple providers to 
multiple customers, with an auctioneer 

 
In a cloud environment, practitioners are concerned about 

Quality of Service (QoS). The sharing of resources, software, 

and information makes up the basic functions of cloud 
computing. In an auction design, economic models can be used 
to reduce unnecessary costs, to regulate available resources, to 
provide incentives for providers, and to stimulate buyers to 
choose the preferred services that are associated with rational 
evaluation and QoS criteria. Due to the heterogeneity of cloud 
computing, a well-designed auction is a basic step toward 
allocating available resources to meet supply and demand, via 
the Internet. QoS-based auction design is a good attempt at 
finding an efficient and effective way to benefit from cloud 
computing and to guarantee the performance of the cloud.   
Quality of Service describes the requirements that a service 
provider should provide to its customers, such as service 
availability, reliability, security, privacy, scalability, and 
integrity. Our model allows bidders to submit their own 
valuations and QoS-based bidding strategies. The transaction 
price will be calculated based on the basis of each participant’s 
bid directly related to QoS availability, although the economic 
perspectives of supply and demand in the cloud market still 
impact participants' auctioning strategies. What we did was use 
an exponential function to price cloud services based on QoS 
metrics (availability) and bids from customers. In this way, 
available cloud services can be distributed to clients with 
heterogeneous QoS expectations and portfolio requirements. 
Only buyers submit bids and QoS preferences for a certain item. 
A QoS-based auction mechanism is a good pricing strategy that 
could enrich the classic auction design, especially for the 
bidding targets with unique or not-easy-to-estimate features, 
e.g., cloud service has QoS criteria. 

III. THE MODEL OF QOS AND PRICE 

A. Reliability and Availability 

The reliability and availability of cloud computing are the 
crucial QoS parameters, but they are difficult to quantifiably 
analyze because cloud services are implemented through the 
entire serving process in a complicated network that integrates 
software, hardware, and the related techniques. Reliability 
focuses on the downtime of cloud service, while availability 
represents the uptime of cloud services [Armbrust, et al., 2010]. 
Reliability and availability are interrelated with each other. A 
better performance of reliability will lead to better performance 
of availability. A more stable system will decrease the number 
of failures and lessen the time of repair. In the real world, 
reliability and availability are integrated with each other greatly 
impacting the overall performance of cloud services. 

The relationship between reliability and availability is: 

A = 
ெ்஻ி

ெ்஻ிାெ்்ோ
 = 

௎௣௧௜௠௘

௎௣௧௜௠௘ା஽௢௪௡௧௜௠௘
 (1) 

A refers to availability. MTBF (Uptime) and MTTR 
(Downtime) are the two parameters of reliability. MTBF is the 
Mean Time between Failure, and MTTR is the Mean Time to 
Repair. Thus, based on the above function, the availability can 
be increased either by increasing the average time interval 
between repairs (MTBF) or by decreasing the repair time 
(MTTR). The intuitive way to represent availability is using the 
downtime associated with Nines and Fives. The following table 
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is an example. 
Table Ⅱ 

Representation of Availability 

Availability Downtime 

99% (2-nines) 3.65 days/year 

99.5% (2N5) 1.825 days/year 

99.9% (3-nines) 8.76 hours/year 

99.95% (3N5) 4.38 hours/year 

99.99% (4-nines) 52 minutes/year 

99.995% (4N5) 26 minutes/year 

99.999% (5-nines) 5 minutes/year  
 

B. The Relationship between Availability and Price 

The QoS metrics is the availability of cloud service (𝐴(௫)), 
and the bidding price is the average price (𝑦) of the same item 
from different customers’ bids. 

The function that expresses availability is: 
𝐴(௫) = 1 − 10ି௫ା௚(௫) (2) 

Where x represents the level of availability as Nines and 
Fives, e.g., x=2, it means “2Nines” as 99%; x=3.5, it means 
“3N5” as 99.95%. x = {x/x=2, 2.5, 3, 3.5, 4, 4.5, …}. 𝑔(𝑥) is a 
function that is the potential to calculate the result of x. Since 
we know all possible (x, y): (2, 99%), (2.5, 99.5%), (3, 
99.9%), …, the function can be addressed as: 

𝐴(௫) = 1 − 10ି௫ା(଴.ହା୪୬ ଴.ହ)௦௜௡మ(గ௫) (3) 

Therefore, x is expressed by 𝐴(௫) as: 

x = ቊ
− lnൣ1 − 𝐴(௫)൧, 𝑖𝑓 𝑥 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

(0.5 + ln 0.5) − lnൣ1 − 𝐴(௫)൧ , 𝑖𝑓 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
 

C. One Example of The Relationship between Availability 
and Price 

The exponential function that expresses price by the QoS 
availability is: 

𝑦 = 𝑎 + 𝑐𝑏௛(ೣ) (4) 
Where, a is the constant and c is the slope. b is the base of the 

exponentiation, and ℎ(௫) is the exponent. Now, we can compute 
the exponential function based on x and y. In fact, there exist 
many different ways to establish the relationship between QoS 
metrics and cloud price. This relationship can be represented by 
a linear function that is easy to implement but not accurate. 
Because even with a slight increase in reliability and 
availability, the costs associated with cloud services increase 
significantly. Hence, an exponential algorithm is a better 
approach to describe the relationship between QoS metrics and 
cloud price. Figure 1 illustrates one example of the exponential 
relationship between price and availability. Based on the 
different levels of availability (x) that customers bid, such as 2 
(99%), 2.5 (99.5%), 3 (99.9%), 3.5 (99.95%), 4 (99.99%), 4.5 
(99.995%), 5 (99.999%), 5.5 (99.9995%), 6 (99.9999%), firstly 
the average price (y) of each level of cloud service is calculated 
accordingly: $0.004, $0.01, $0.0146, $0.0194, $0.027, $0.0342, 
$0.0676, $0.0937, $0.1415. Then, based on function (4), the 
relationship between QoS availability and price is calculated as: 

 𝑦 = 0.001𝑒଴.଼ଶ଴ଷ௫  
 

 
Figure Ⅰ One Example of the Exponential Relation 

IV. ROBUST OPTIMIZATION SCHEME 

A. Robust Auction Design 

Symbols and Assumptions  
This section addresses the related parameters and 

mathematical symbols used. Suppose there are n customers, n 
= {1, 2, …, n}, and ith represents the customer i. There are m 
providers, m = {1, 2, …, m}, and jth represents the resource j. 
𝑇௠,௝ represents the mth supplier offers the resource j or not. 𝑇௠,௝ 
is a binary factor, 𝑇௠,௝  (=1) means that the mth supplier is 
capable of offering the resource j, 𝑇௠,௝ (=0) means that the mth 
supplier doesn’t provide the resource j. 𝑤௜,௝,௠ illustrates that the 
customer i obtains the resource j provided by supplier m, and 
all the bidding resources are set in the matrix W.  

In the system, the customer is the buyer, the provider is the 
seller. The buyer’s bid is 𝑏௜,௝,௠, represented by vector B, and 

the final price is 𝑝௜,௝,௠
௕ . The customer i’s value is 𝑉௜ , 𝑣௜,௝,௠ 

represents the valuation of the resource j provided by the seller 
m. The cost of the resource j is 𝑐௜,௝ . 𝐷௜,௝ represents the demand 
of the buyer i on the resource j. The capability of the resource j 
from the seller m is 𝐶௝.௠. The more the buyer bids, the utility (µ) 
is higher. Specifically, µ௜,௝  = ℎ௜,௝𝑣௜  (𝑏௜,௝) – 𝑐௜  (𝑏௜,௝). 

The customer’s bid has two general constraints. (1) a 
customer needs to bid incrementally, (2) all customers are 
truthful bidders. The set (U) of all possible bids is: 𝑈௝ = {(𝑏ଵ,௝, 

𝑏ଶ,௝, …, 𝑏௡,௝) | -Ґ ≤ 
∑ ௩೔,ೕି௡µೕ

೙
೔సభ

√௡ ఙೕ
 ≤ Ґ}. Where µ௝ and 𝜎௝ are the 

bidding prices of two different times, respectively. 
Optimal Auction Model  
The overall auction model (M1) is: 

𝑚𝑎𝑥 ෍ ෍ ෍ 𝑥௜,௝,௠𝑏௜,௝,௠
௠௝௜

 (5) 

Subject to 

෍ 𝑥௜,௝,௠
௠

= 1, ∀ 𝑖, 𝑗 

෍ 𝑥௜,௝,௠𝐷௜𝑇௠,௝ ≤ 𝐶௝,௠
௜

, ∀ 𝑚, 𝑗 

෍ ෍ 𝑏ప,ఫ
തതതത − 𝑝పഥ

௝
≤ ෍ ෍ 𝑏௜,௝𝑥௜,௝,௠

௝
− 𝑝௜

௠௠
 

𝑐௜,௝,௠ ≤ 𝑏௜,௝,௠ ≤ 𝑣௜,௝,௠ , ∀ 𝑖, 𝑗, 𝑚 

(6) 
 
(7) 
 
(8) 
 
(9) 

𝑥௜,௝,௠ ∈ {0,1}, ∀ 𝑖, 𝑗, 𝑚  (10) 

2, 0.004
2.5, 0.013, 0.01463.5, 0.0194

4, 0.027
4.5, 0.0342

5, 0.0676

5.5, 0.0937

6, 0.1415

y = 0.001e0.8203x

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2 3 4 5 6
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Function M1 is the maximum revenue for all the bidding 
resources. Constraint (6) indicates that there must be at least one 
seller (m) can provide the resource j as the buyer (i) expects. 
Constraint (7) indicates that the possible allocation of a seller’
s resources is less than the seller’s capacity. Constraint (8) 
indicates that all buyers are trustworthiness. Constraint (9) 
indicates that the bid is between the cost and the value of the 
resource.  

Function M1 is an integer (0-1) programming problem. This 
problem belongs to NP-hardness [Karp, 1972]. It is transformed 
to a solvable linear programming problem to find the optimal 
solution. 

B. Solution to the Model 

Algorithm 1 
 
The M1 model is based on the fact that 𝑏௜,௝,௠  can be 

estimated and controlled, but in reality, each user's pricing 
strategy and actual bid are dynamic and difficult to estimate. 
This study focuses on how to allocate resources to users based 
on their bidding strategies to meet the needs of users and 
resource providers. For the problem of uncertain optimization, 
a robust optimization method can be used to solve the problem. 
There are four criteria: optimal coordination based on 
probability, optimistic criteria, conservative criteria, and 
optimistic and conservative weighting [Beyer & Sendhoff, 
2007; Bertsimas, et al., 2011; Bandi & Bertsimas, 2014]. This 
study uses conservative criteria. It is seeking the worst result of 
the original problem and then finding the optimal case under the 
worst scenario.  

Since 𝑏 ௜,௝  is uncertain in model M1, 𝑏ప,ఫ,௠
෣  is used to 

represent the conservative bid of user i, and the user i has to pay 
this amount to get the required resource j. Constraint (8) can be 
converted to its equivalent. In order to achieve a reasonable 
resource allocation, each customer first proposes a conservative 
bid, and then provider can obtain a higher return based on the 
bid. Using a conservative bid (𝑏ప,ఫ,௠

෣ ) converts the original 0/1 
problem into a linear programming problem. M1 is converted 
to M2: 

𝑚𝑎𝑥 ෍ ෍ ෍ 𝑥௜,௝,௠𝑏ప,ఫ,௠
෣

௠௝௜
 (11) 

Subject to 

෍ 𝑥௜,௝,௠
௠

= 1, ∀ 𝑖, 𝑗  

෍ 𝑥௜,௝,௠𝑣௠,௝ ≤ 𝐵௜,௠
௜

, ∀ 𝑚, 𝑗 (12) 

෍ 𝑥௜,௝,௠𝐷௜𝑇௠,௝ ≤ 𝐶௝,௠
௜

, ∀ 𝑚, 𝑗  

෍ 𝑥௜,௝,௠𝑏ప,ఫ,௠
෣ ≤ ෍ ෍ 𝑥௜,௝,௠µ௜,௝,௠

௝௠
,

௠
∀ 𝑖, 𝑗 (13) 

𝑐௜,௝,௠ ≤ 𝑏ప,ఫ,௠
෣ ≤ 𝑣௜,௝,௠ , ∀ 𝑖, 𝑗, 𝑚 (14) 

𝑥௜,௝,௠ ≥ 0, ∀ 𝑖, 𝑗, 𝑚  (15) 
Now, M2 is converted into M3, which is the dual problem of 

M2. 

𝑚𝑖𝑛 ෍ ෍ 𝜀௜,௝ + ෍ ෍ (𝛿௠,௝𝐵௜,௠
௠௜௝௜

+ 𝜃௠,௝ ෍ 𝑥௜,௝,௠
∗ 𝑈௜,௝

௝
) 

(16) 

 
Subject to 

𝜀௜,௝ + 𝑧௜,௝,௠𝛿௠,௝ + 𝑧௜,௝,௠𝜃௠,௝ ≥ 𝑧௜,௝,௠ (17) 
𝜀, 𝛿, 𝜃 ≥ 0 (18) 

𝑧௜,௝,௠ is the bid of the worst scenario, 𝑥௜,௝,௠
∗  is the solution. 

The user i’s uncertain bid is 𝑈௜,௝. Specifically, 

𝑈௜ = 𝑎𝑟𝑔𝑚𝑖𝑛 ෍ ෍ 𝑥௜,௝,௠
∗ 𝜇௜,௝

௝௠
 (19) 

The user’s conservative bid (𝑏ప,ఫ,௠
෣ ) can be represented by  

𝑧௜,௝,௠. Since 𝑧௜,௝,௠ is the bid under the worst scenario, 

𝑏ప,ఫ,௠
෣ = 𝜀௜,௝

∗ + 𝑧௜,௝,௠𝛿௠,௝
∗ + 𝑧௜,௝,௠𝜃௠,௝

∗  (20) 

𝜀∗, 𝛿∗, and 𝜃∗ are the parameters of the dual problem, 
respectively. These parameters can be solved by model M3. 
After the results of M3 are solved, the algorithm 1 can be 
employed to solve 𝑏ప,ఫ,௠

෣ . 
 

Algorithm 1. Estimated Bidding Algorithm 
Algorithm 1 Calculating the Estimated Bidding Price 

Input: The Uncertain Price Set U 

Output: 𝑏ప,ఫ,௠
෣   and 𝑥௜,௝,௠

∗  

Based on model M2, calculate the bid of the worst scenario (𝑧௜,௝,௠) and the 
associated allocation result (𝑥௜,௝,௠); 
Based on model M3, calculating the parameters 𝜀∗, 𝛿∗, and 𝜃∗; 
To each of the involved suppliers  
Based on Function (20), calculate the estimated bidding price (𝑏ప,ఫ,௠

෣ ). 

 
Algorithm 2 
 
After we get 𝑏ప,ఫ,௠

෣  and 𝑥௜,௝,௠
∗ , the Algorithm 2 will solve the 

allocation and the final price. The intermediary variable 𝑦௜,௝,௠
௕  

represents adopted allocation, and the final allocation result is 
𝑎௜,௝,௠

௕ = 𝑥௜,௝,௠
∗ + 𝑦௜,௝,௠

௕ , 𝑎௜,௝,௠
௕  is the final allocation results. 

Specifically, bidding vector is B, the final price is  𝑝௜,௝,௠
௕ . 𝑦௜,௝,௠

௕ି௞  
is the temporary intermediate allocation. 

𝑦௜,௝,௠
௕ = 𝑎𝑟𝑔𝑚𝑎𝑥 ෍ ෍ ෍ 𝑦௜,௝,௠(𝑏 − 𝑏ప,ఫ,௠

෣ )
௠௝௜

 (21) 

𝑦௜,௝,௠
௕ି௛ = 𝑎𝑟𝑔𝑚𝑎𝑥 ෍ ෍ ෍ 𝑦௜,௝,௠(𝑏 − 𝑏ప,ఫ,௠

෣ )
௠௝௜ஷ௞

 (22) 

The user’s flexible bidding policy: 

𝑃 = 𝑎𝑟𝑔 ൞

෍ ෍ 𝑦௜,௝,௠ ≤ 1 − ෍ ෍ 𝑥௜,௝,௠
∗

௠௜௠௜

෍ 𝑦௜,௝,௠𝜇௜,௝,௠ ≤ 𝐵௜,௠ − ෍ 𝑥௜,௝,௠
∗ 𝑏ప,ఫ,௠

෣ + ෍ 𝑥௞,௝,௠
∗ 𝜃∗𝑈௜,௝,௠

௝௝௝

ൢ 

(23) 

 
Since the final price is determined by the user i’s bid and 

other users’ bids, we define 𝑄௞ is the allocation of the user k. 

𝑄௞ = 𝑎𝑟𝑔 ൞

෍ ෍ 𝑦௜,௝,௠ ≤ 1 − ෍ ෍ 𝑥௜,௝,௠
∗

௠௜௠௜ஷ௞

෍ 𝑦௜,௝,௠𝜇௜,௝,௠ ≤ 𝐵௜,௠ − ෍ 𝑥௜,௝,௠
∗ 𝑏ప,ఫ,௠

෣  
௝௝

ൢ 

(24) 

Function (21)’s constraint is function (23), and function 
(22)’s constraint is function (24).  

The final allocation (𝑎௜,௝,௠
௕ ) is 
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𝑎௜,௝,௠
௕ = 𝑥௜,௝,௠

∗ + 𝑦௜,௝,௠
௕  (25) 

The final price ((𝑝௞,௠
௕ ) is 

𝑝௞,௠
௕ = ෍ 𝑦௞,௝,௠

௕ 𝑏ప,ఫ,௠
෣  + ෍ 𝑥௞,௝,௠

∗

௝௝
𝑏௞,ఫ,௠
෣  

− ෍ 𝑥௞,௝,௠
∗ 𝜃∗𝑈௞,௝,௠

௝

+ ෍ ෍ ෍ 𝑦௜,௝,௠
௕ି௞ ൫𝑏

௠௝௜ஷ௞

− 𝑏ప,ఫ,௠
෣  ൯

− ෍ ෍ ෍ 𝑦௜,௝,௠
௕ (𝑏

௠௝௜ஷ௞

− 𝑏ప,ఫ,௠
෣  ) 

 

(26) 

Algorithm 2. Resource Allocation Algorithm 

Algorithm 2 Resource Allocation Algorithm 

Input: The bidding vector b and the estimated prices 𝑏ప,ఫ,௠
෣   and 𝑥௜,௝,௠

∗  

Output: The final allocation vector 𝑎௜,௝,௠
௕  and the final price 𝑝௜,௝,௠

௕  

To each supplier m 
             If 𝑏௜,௝,௠ ∉  𝑈௜,௝ 
                     Won’t provide any resource to the user I;  
Based on function (21) and (22), calculate the allocation 𝑦௜,௝,௠

௕  and the 

temporary variable 𝑦௜,௝,௠
௕ି௞  that satisfies function (23) and (24); 

Based on Function (25) and (26), calculate the final allocation vector 𝑎௜,௝,௠
௕  

and the final price 𝑝௜,௝,௠
௕ . 

The solution to M2 is solved by Algorithm 1 and Algorithm 
2. We get the final allocation 𝑎௜,௝,௠

௕   and the final price 𝑝௜,௝,௠
௕ . 

C. Theoretical Proof 

In our study, the final price is similar to the transaction price 
in VCG [Vickrey, 1961; Varian & Harris, 2014]. The 
transaction price is associated with each users’ bids, which 
consist of the winning bids and unsuccessful bids. In this 
section, we will illustrate that the solutions to Algorithm 1 and 
Algorithm 2 are also the solution for the original model M1.  

Lemma 1. The unknown variables (z, 𝑥∗, 𝜀∗, 𝛿∗, 𝜃∗, 𝑏෠) of 
Algorithm 1 and Algorithm 2 satisfy the following relations. 

෍ ෍ 𝑥௜,௝,௠
∗

௜௠
≤ 1, ∀ 𝑗 (27) 

෍ 𝑥௜,௝,௠
∗ 𝑧௜,௝,௠ ≤ 𝐵௜,௠

௝
, ∀ 𝑖, 𝑚 (28) 

෍ ෍ 𝑥௜,௝,௠
∗ 𝑧௜,௝,௠

௝
≤ ෍ ෍ 𝑥௜,௝,௠

∗ 𝑧௜,௝,௠
௝௠௠

, ∀ 𝑖 (29) 

𝑥௜,௝,௠
∗ 𝑏ప,ఫ,௠

෣  = 𝑥௜,௝,௠
∗ 𝑧௜,௝,௠ , ∀ 𝑖, 𝑗, 𝑚 (30) 

෍ 𝑥௜,௝,௠
∗ 𝑏ప,ఫ,௠

෣  ≤ 𝐵௜,௠
௝

, ∀ 𝑖, 𝑚 (31) 

෍ ෍ ෍ 𝑥௜,௝,௠
∗ 𝑏ప,ఫ,௠

෣  
௠௝௜

= ෍ ෍ 𝜀௜,௝
∗

௝௜

+ ෍ ෍ (𝛿௠,௝
∗ 𝐵௜,௠

௠௜

+ 𝜃௠,௝
∗ ෍ 𝑥௜,௝,௠

∗ 𝑈௜,௝
௝

)  

(32) 

According to Functions (27)-(29), 𝑧௜,௝,௠ is a fixed term. The 
optimal model M2 can be converted to the following: 

𝑚𝑎𝑥 ෍ ෍ ෍ 𝑥௜,௝,௠𝑧௜,௝,௠
௠௝௜

 

s.t. 

෍ ෍ 𝑥௜,௝,௠
௜௠

≤ 1, ∀ 𝑖, 𝑗  

෍ 𝑥௜,௝,௠𝑧௜,௝,௠ ≤
௝

𝐵௜,௠ , ∀ 𝑖, 𝑚  

෍ ෍ 𝑥௜,௝,௠𝑧௜,௝,௠ ≤
௝௠

෍ ෍ 𝑥௜,௝,௠𝜇௜,௝,௠
௝௠

, ∀ 𝑖 (33) 

 
Since 𝑥௜,௝,௠

∗  is one solution to the optimal problem, Function 
(33) can be transformed into another question of M3. 

 𝑚𝑎𝑥 ෍ ෍ ෍ 𝑥௜,௝,௠𝑧௜,௝,௠
௠௝௜

  

s.t. 

෍ ෍ 𝑥௜,௝,௠
௜௠

≤ 1, ∀ 𝑖, 𝑗  

෍ 𝑥௜,௝,௠𝑧௜,௝,௠ ≤
௝

𝐵௜,௠ , ∀ 𝑖, 𝑚  

෍ ෍ 𝑥௜,௝,௠𝑧௜,௝,௠ ≤
௝௠

෍ ෍ 𝑥௜,௝,௠
∗ 𝜇௜,௝,௠

௝௠
, ∀ 𝑖 (34) 

 
If �̅� is the solution of function (34), and 𝑥∗ is the solution of 

function (33), 𝑥∗ is also one solution of function (34). 

෍ ෍ ෍ �̅�௜,௝,௠𝑧௜,௝,௠
௝௜௠

≥ ෍ ෍ ෍ 𝑥∗
௜,௝,௠𝑧௜,௝,௠

௜௝௠
 

(35) 

And 

෍ ෍ �̅�௜,௝,௠𝑧௜,௝,௠
௝௠

≤ ෍ ෍ 𝑥∗
௜,௝,௠𝜇௜,௝,௠

௝௠
, ∀ 𝑖 (36) 

 
Based on function (35) and (36), 

෍ ෍ ෍ 𝑥∗
௜,௝,௠𝑧௜,௝,௠

௜௝௠
≤ ෍ ෍ 𝑥∗

௜,௝,௠𝜇௜,௝,௠
௝௠

 (37) 

 
Thus, 𝑥∗

௜,௝,௠  is the optimal solution to Function (21). 
Function (34) can be converted to the following: 

෍ ෍ 𝑥∗
௜,௝,௠𝑧௜,௝,௠

௝௠
≤ ෍ ෍ 𝑥∗

௜,௝,௠𝜇௜,௝,௠
௝௠

 (38) 

 
Hence, 𝑥∗

௜,௝,௠ is an optimal solution to Function (33). 𝑈௜ is 
computed from Function (19). We have the following: 

 𝑚𝑎𝑥 ෍ ෍ ෍ 𝑥௜,௝,௠𝑧௜,௝,௠
௠௝௜

  

s.t. 

෍ ෍ 𝑥௜,௝,௠
௜௠

≤ 1, ∀ 𝑖, 𝑗  

෍ 𝑥௜,௝,௠𝑧௜,௝,௠ ≤
௝

𝐵௜,௠ , ∀ 𝑖, 𝑚  

෍ ෍ 𝑥௜,௝,௠𝑧௜,௝,௠ ≤
௝௠

෍ ෍ 𝑥௜,௝,௠
∗ 𝑈௜

௝௠
, ∀ 𝑖 (39) 

 
Obviously, 𝑥∗

௜,௝,௠ is the optimal solution to Function (39). 
The Dual Problem of Function (39) can be the following: 

𝑚𝑖𝑛 ෍ ෍ 𝜀௜,௝ + ෍ ෍ (𝛿௠,௝𝐵௜,௠
௠௜௝௜

+ 𝜃௠,௝ ෍ 𝑥௜,௝,௠
∗ 𝑈௜,௝

௝
) 

(40) 

s.t. 
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𝜀௜,௝ + 𝑧௜,௝,௠𝛿௠,௝ + 𝑧௜,௝,௠𝜃௠,௝ ≥ 𝑧௜,௝,௠, 𝜀, 𝛿, 𝜃 ≥ 0 (41) 
𝜀, η, and θ represent the parameters of three constraints. 

Define 𝜀∗, 𝛿∗, 𝜃∗ are the values corresponding to the three 
parameters, when 𝑥௜,௝,௠

∗  is the optimal solution. According to 
Complementary Relaxation Theorem, we have the following: 

𝜀∗ ෍ ෍ 𝑥௜,௝,௠
௜௠

= 𝜀∗, ∀ 𝑗  

𝛿∗ ∑ 𝑥௜,௝,௠𝑧௜,௝,௠௝ = 𝛿∗𝐵௜,௠, ∀ 𝑖, 𝑚  
𝜃∗ ∑ ∑ 𝑥௜,௝,௠𝑧௜,௝,௠௝௠ ≤ 𝜃∗ ∑ ∑ 𝑥௜,௝,௠

∗ 𝑈௜,௝௝௠ , ∀ 𝑖  

𝑥௜,௝,௠
∗ ൫𝜀௜,௝ + 𝑧௜,௝,௠𝛿௠,௝ + 𝑧௜,௝,௠𝜃௠,௝൯ = 𝑥௜,௝,௠

∗ 𝑧௜,௝,௠ (42) 

 
𝑥∗

௜,௝,௠ is the optimal solution to Function (34), according to 
the Strong Dual Theorem, we get, 

෍ ෍ ෍ 𝑥௜,௝,௠
∗ 𝑧௜,௝,௠

௠௝௜

= ෍ ෍ 𝛿∗

௝௜

+ ෍ ෍ (𝛿∗𝐵௜,௠
௠௜

+ 𝜃∗ ෍ 𝑥௜,௝,௠
∗ 𝑈௜,௝

௝
) 

(43) 

Based on function (20), (42), and (43), Function (18) and (19) 
can be proofed. And Lemma 1 can be proved as well. 

V. FUTURE DIRECTION 

Based on conventional auction design, we added QoS metrics 
(availability) and established a robust optimal auction to price 
and allocate cloud resources. For future research, there are two 
potential directions. An auction model could be converted to a 
combinatorial double auction design. In this way, customers 
will have the opportunity to bid for bundled (package) cloud 
services. The major cloud trading platform is centralized and 
controlled by companies. A blockchain-based decentralized 
P2P cloud trading platform is potential to play an important role 
in allocating cloud resources between customers without 
unnecessary third-party intervention. The decentralized P2P 
cloud trading system is a good complementary of the 
conventional trading system. 

Providers will compete with each other and submit bids 
related to guaranteed QoS. The mathematical issue (NP-
Hardness) and the computational complexity should be 
carefully considered as well [Roughgarden, 2010]. Another 
direction is to adjust the QoS metrics. We only employed the 
availability as the indicator of QoS in this study. Multiple 
indicators can be added to represent the exponential 
relationship between price and QoS. Such as security. More 
QoS metrics are added into the auction algorithm, more 
accurate and practical the estimates will be. The relationship 
between price and multiple QoS indicators will be worth 
investigating in real-world industries. Whereas more QoS 
metrics involved may lead to the complexity of algorithms, 
deep learning method is a possible way to assess cloud price, 
according to the training layer (historical pricing records) and 
output layers (estimated results).  

VI. CONCLUSION 

In the cloud environment, QoS criteria is critical to the 
overall performance of cloud resources. The extant research 
seldom illustrates the relationship between QoS metrics and 
price; our design has the potential to achieve this. By a dynamic 
pricing mechanism, cloud resources can be traded between 
provider and customer with uncertainties, e.g., budget 
constraints. In our work, we address the robust optimal 
allocation of cloud services to users who are flexible in their 
bids for their preferred QoS metrics (availability). Our study 
presents us with one probable way of investigating the 
questions of how companies formulate prices for cloud services 
and how customers can utilize the pricing mechanism to bid for 
cloud services, based upon the QoS metrics (availability). We 
highlighted the QoS indicator that was employed in the auction 
mechanism to price cloud services among different participants. 
The robust optimal auction design is an appropriate pricing 
mechanism for cloud resources in a distributed trading system. 
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APPENDIX 

Table Ⅲ. Main Variables and Explanations (Alphabetic Order) 
Variable Description Variable Description 
a the constant of the 

exponential function 
𝑝௜,௝,௠

௕  the final price 

𝑎௜,௝,௠
௕  the final allocation 

results 
𝑄௞  the allocation of 

the user k 
𝐴(௫) the QoS availability 

of cloud service 
𝑣௜,௝,௠ the valuation of 

the resource j 
provided by the 
seller m 

b the base of the 
exponential function 

𝑉௜ the valuation of 
customer i 

𝑏௜,௝,௠ the buyer’s bid 𝑇௠,௝ the mth supplier 
offers the resource 
j or not 

𝑏ప,ఫ,௠
෣  the conservative bid 

of user i 
U the set of all 

possible bids 
c the coefficient of the 

exponential function 
𝑈௜,௝ user i’s uncertain 

bid 
𝑐௜,௝ The cost of resource 

j 
x the level of QoS 

availability 
𝐶௝.௠ The capability of the 

resource j from the 
seller m 

𝑥௜,௝,௠
∗  the decision 

variable, 𝑥௜,௝,௠ ∈

{0,1} 
𝐷௜,௝ the demand of the 

buyer i on the 
resource j 

y the average 
bidding price of 
cloud service 

h(x) the exponent of the 
exponential function 

𝑦௜,௝,௠
௕  the intermediary 

variable 
i the ith bidder 𝑦௜,௝,௠

௕ି௞  the temporary 
intermediate 
allocation 

j the jth provider 𝑧௜,௝,௠ the bid of the 
worst scenario 

m there are m sellers µ the utility 

n there are n buyers 𝜀∗, 𝛿∗, 𝜃∗ the parameters of 
the dual problem 

 
 
 
 


